垃圾邮件过滤器使用一种简单算法——朴素贝叶斯分类器(Naive Bayes classifier),你首先需要使用一些数据对这个分类器进行训练。

假设你收到一封主题为“ collect your million dollars now!”的邮件,这是垃圾邮件吗?你可研究这个句子中的每个单词,看看它在垃圾邮件中出现的概率是多少。例如,使用这个非常简单的模型时,发现只有单词million在垃圾邮件中出现过。朴素贝叶斯分类器能计算出邮件为垃圾邮件的概率,其应用领域与KNN相似。
例如,你可使用朴素贝叶斯分类器来对水果进行分类:假设有一个又大又红的水果,它是柚子的概率是多少呢?朴素贝叶斯分类器也是一种简单而极其有效的算法。我们钟爱这样的算法!