答案是使用动态规划!下面来看看动态规划算法的工作原理。动态规划先解决子问题,再逐步解决大问题。

对于背包问题,你先解决小背包(子背包)问题,再逐步解决原来的问题。

动态规划是一个难以理解的概念,如果你没有立即搞懂,也不用担心,我们将研究很多示例。

先来演示这种算法的执行过程。看过执行过程后,你心里将有一大堆问题!我将竭尽所能解答这些问题。

每个动态规划算法都从一个网格开始,背包问题的网格如下。

网格的各行为商品,各列为不同容量(1~4磅)的背包。所有这些列你都需要,因为它们将帮助你计算子背包的价值。

网格最初是空的。你将填充其中的每个单元格,网格填满后,就找到了问题的答案!你一定要跟着做。请你创建网格,我们一起来填满它。

吉他行

后面将列出计算这个网格中单元格值的公式。我们先来一步一步做。首先来看第一行。

这是吉他行,意味着你将尝试将吉他装入背包。在每个单元格,都需要做一个简单的决定:偷不偷吉他?别忘了,你要找出一个价值最高的商品集合。

第一个单元格表示背包的容量为1磅。吉他的重量也是1磅,这意味着它能装入背包!因此这个单元格包含吉他,价值为1500美元。

下面来开始填充网格。

与这个单元格一样,每个单元格都将包含当前可装入背包的所有商品。

来看下一个单元格。这个单元格表示背包的容量为2磅,完全能够装下吉他!

这行的其他单元格也一样。别忘了,这是第一行,只有吉他可供你选择。换言之,你假装现在还没法盗窃其他两件商品。

此时你很可能心存疑惑:原来的问题说的是4磅的背包,我们为何要考虑容量为1磅、 2磅等的背包呢?前面说过,动态规划从小问题着手,逐步解决大问题。这里解决的子问题将帮助你解决大问题。请接着往下读,稍后你就会明白的。

此时网格应类似于下面这样。

别忘了, 你要做的是让背包中商品的价值最大。这行表示的是当前的最大价值。它指出,如果你有一个容量4磅的背包,可在其中装入的商品的最大价值为1500美元。

你知道这不是最终的解。随着算法往下执行,你将逐步修改最大价值。

音响行

我们来填充下一行——音响行。你现在处于第二行,可偷的商品有吉他和音响。在每一行,可偷的商品都为当前行的商品以及之前各行的商品。因此,当前你还不能偷笔记本电脑,而只能偷音响和吉他。我们先来看第一个单元格,它表示容量为1磅的背包。在此之前,可装入1磅背包的商品的最大价值为1500美元。

该不该偷音响呢?

背包的容量为1磅,能装下音响吗?音响太重了,装不下!由于容量1磅的背包装不下音响,因此最大价值依然是1500美元。

接下来的两个单元格的情况与此相同。在这些单元格中,背包的容量分别为2磅和3磅,而以前的最大价值为1500美元。

由于这些背包装不下音响,因此最大价值保持不变。

背包容量为4磅呢?终于能够装下音响了!原来的最大价值为1500美元,但如果在背包中装入音响而不是吉他,价值将为3000美元!因此还是偷音响吧。

你更新了最大价值!如果背包的容量为4磅,就能装入价值至少3000美元的商品。在这个网格中,你逐步地更新最大价值。

笔记本电脑行

下面以同样的方式处理笔记本电脑。笔记本电脑重3磅,没法将其装入容量为1磅或2磅的背包,因此前两个单元格的最大价值还是1500美元。

对于容量为3磅的背包,原来的最大价值为1500美元,但现在你可选择盗窃价值2000美元的笔记本电脑而不是吉他,这样新的最大价值将为2000美元!

对于容量为4磅的背包,情况很有趣。这是非常重要的部分。当前的最大价值为3000美元,你可不偷音响,而偷笔记本电脑,但它只值2000美元。

价值没有原来高。但等一等,笔记本电脑的重量只有3磅,背包还有1磅的容量没用!

在1磅的容量中,可装入的商品的最大价值是多少呢?你之前计算过。

根据之前计算的最大价值可知,在1磅的容量中可装入吉他,价值1500美元。因此,你需要做如下比较。

你可能始终心存疑惑:为何计算小背包可装入的商品的最大价值呢?但愿你现在明白了其中的原因!余下了空间时,你可根据这些子问题的答案来确定余下的空间可装入哪些商品。笔记本电脑和吉他的总价值为3500美元,因此偷它们是更好的选择。

最终的网格类似于下面这样。

答案如下:将吉他和笔记本电脑装入背包时价值最高,为3500美元。

你可能认为,计算最后一个单元格的价值时,我使用了不同的公式。那是因为填充之前的单元格时,我故意避开了一些复杂的因素。其实,计算每个单元格的价值时,使用的公式都相同。这个公式如下。

你可以使用这个公式来计算每个单元格的价值,最终的网格将与前一个网格相同。现在你明白了为何要求解子问题吧?你可以合并两个子问题的解来得到更大问题的解。

results matching ""

    No results matching ""