术语介绍得差不多了,我们再来看一个例子!这是Rama,想拿一本乐谱换架钢琴。
Alex说:“这是我最喜欢的乐队Destroyer的海报,我愿意拿它换你的乐谱。如果你再加5美元,还可拿乐谱换我这张稀有的Rick Astley黑胶唱片。” Amy说:“哇,我听说这张黑胶唱片里有首非常好听的歌曲,我愿意拿我的吉他或架子鼓换这张海报或黑胶唱片。
Beethoven惊呼:“我一直想要吉他,我愿意拿我的钢琴换Amy的吉他或架子鼓。”
太好了!只要再花一点点钱, Rama就能拿乐谱换架钢琴。现在他需要确定的是,如何花最少的钱实现这个目标。我们来绘制一个图,列出大家的交换意愿。
这个图中的节点是大家愿意拿出来交换的东西,边的权重是交换时需要额外加多少钱。拿海报换吉他需要额外加30美元,拿黑胶唱片换吉他需要额外加15美元。 Rama需要确定采用哪种路径将乐谱换成钢琴时需要支付的额外费用最少。为此,可以使用狄克斯特拉算法!别忘了,狄克斯特拉算法包含四个步骤。在这个示例中,你将完成所有这些步骤,因此你也将计算最终路径。
动手之前,你需要做些准备工作:创建一个表格,在其中列出每个节点的开销。这里的开销指的是达到节点需要额外支付多少钱。
在执行狄克斯特拉算法的过程中,你将不断更新这个表。为计算最终路径,还需在这个表中添加表示父节点的列。
这列的作用将稍后介绍。我们开始执行算法吧。
第一步:
找出最便宜的节点。在这里,换海报最便宜,不需要支付额外的费用。还有更便宜的换海报的途径吗?这一点非常重要,你一定要想一想。 Rama能够通过一系列交换得到海报,还能额外得到钱吗?想清楚后接着往下读。答案是不能, 因为海报是Rama能够到达的最便宜的节点,没法再便宜了。
下面提供了另一种思考角度。假设你要从家里去单位。
如果你走经过学校的路,到学校需要2分钟。 如果你走经过停车场的路,到停车场需要6分钟。如果经停车场前往学校,能不能将时间缩短到少于2分钟呢?不可能,因为只前往停车场就超过2分钟了。另一方面,有没有能更快到达停车场的路呢?有。
这就是狄克斯特拉算法背后的关键理念: 找出图中最便宜的节点,并确保没有到该节点的更便宜的路径!
回到换钢琴的例子。换海报需要支付的额外费用最少。
第二步:
计算前往该节点的各个邻居的开销。
现在的表中包含低音吉他和架子鼓的开销。这些开销是用海报交换它们时需要支付的额外费用,因此父节点为海报。这意味着,要到达低音吉他,需要沿从海报出发的边前行,对架子鼓来说亦如此。
再次执行第一步:下一个最便宜的节点是黑胶唱片——需要额外支付5美元。
再次执行第二步:更新黑胶唱片的各个邻居的开销。
你更新了架子鼓和吉他的开销!这意味着经“黑胶唱片”前往“架子鼓”和“吉他”的开销更低,因此你将这些乐器的父节点改为黑胶唱片。
下一个最便宜的是吉他,因此更新其邻居的开销。
你终于计算出了用吉他换钢琴的开销,于是你将其父节点设置为吉他。最后,对最后一个节点——架子鼓,做同样的处理。
如果用架子鼓换钢琴, Rama需要额外支付的费用更少。因此, 采用最便宜的交换路径时,Rama需要额外支付35美元。
现在来兑现前面的承诺,确定最终的路径。当前,我们知道最短路径的开销为35美元,但如何确定这条路径呢?为此,先找出钢琴的父节点。
钢琴的父节点为架子鼓,这意味着Rama需要用架子鼓来换钢琴。因此你就沿着这一边。
我们来看看需要沿哪些边前行。 钢琴的父节点为架子鼓。
架子鼓的父节点为黑胶唱片。
因此Rama需要用黑胶唱片了换架子鼓。显然,他需要用乐谱来换黑胶唱片。通过沿父节点回溯,便得到了完整的交换路径。
下面是Rama需要做的一系列交换。
本章前面使用的都是术语最短路径的字面意思:计算两点或两人之间的最短路径。但希望这个示例让你明白:最短路径指的并不一定是物理距离,也可能是让某种度量指标最小。在这个示例中,最短路径指的是Rama想要额外支付的费用最少。这都要归功于狄克斯特拉!