如果线程试图对同一个互斥量加锁两次,那么它自身就会陷入死锁状态,但是使用互斥量时,还有其他不太明显的方式也能产生死锁。例如,程序中使用一个以上的互斥量时,如果允许一个线程一直占有第一个互斥量,并且在试图锁住第二个互斥量时处于阻塞状态,但是拥有第二个互斥量的线程也在试图锁住第一个互斥量。因为两个线程都在相互请求另一个线程拥有的资源,所以这两个线程都无法向前运行,于是就产生死锁。

可以通过仔细控制互斥量加锁的顺序来避免死锁的发生。例如,假设需要对两个互斥量A和B同时加锁。如果所有线程总是在对互斥量B加锁之前锁住互斥量A,那么使用这两个互斥量就不会产生死锁(当然在其他的资源上仍可能出现死锁)。类似地,如果所有的线程总是在锁住互斥量A之前锁住互斥量B,那么也不会发生死锁。可能出现的死锁只会发生在一个线程试图锁住另一个线程以相反的顺序锁住的互斥量。

有时候,应用程序的结构使得对互斥量进行排序是很困难的。如果涉及了太多的锁和数据结构,可用的函数并不能把它转换成简单的层次,那么就需要采用另外的方法。在这种情况下,可以先释放占有的锁,然后过一段时间再试。这种情况可以使用pthread_mutex_trylock接口避免死锁。如果已经占有某些锁而且pthread_mutex_trylock接口返回成功,那么就可以前进。但是,如果不能获取锁,可以先释放已经占有的锁,做好清理工作,然后过一段时间再重新试。

实例

在这个例子中,我们更新了图11-10的程序,展示了两个互斥量的使用方法。在同时需要两个互斥量时,总是让它们以相同的顺序加锁,这样可以避免死锁。第二个互斥量维护着一个用于跟踪foo数据结构的散列列表。这样hashlock互斥量既可以保护foo数据结构中的散列表fh,又可以保护散列链字段f_nextfoo结构中的f_lock互斥量保护对foo结构中的其他字段的访问。

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(id) (((unsigned long)id)%NHASH)

struct foo *fh[NHASH];

pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;

struct foo {
    int             f_count;
    pthread_mutex_t f_lock;
    int             f_id;
    struct foo     *f_next; /* protected by hashlock */
    /* ... more stuff here ... */
};

struct foo *
foo_alloc(int id) /* allocate the object */
{
    struct foo    *fp;
    int            idx;

    if ((fp = malloc(sizeof(struct foo))) != NULL) {
        fp->f_count = 1;
        fp->f_id = id;
        if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {
            free(fp);
            return(NULL);
        }
        idx = HASH(id);
        pthread_mutex_lock(&hashlock);
        fp->f_next = fh[idx];
        fh[idx] = fp;
        pthread_mutex_lock(&fp->f_lock);
        pthread_mutex_unlock(&hashlock);
        /* ... continue initialization ... */
        pthread_mutex_unlock(&fp->f_lock);
    }
    return(fp);
}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{
    pthread_mutex_lock(&fp->f_lock);
    fp->f_count++;
    pthread_mutex_unlock(&fp->f_lock);
}

struct foo *
foo_find(int id) /* find an existing object */
{
    struct foo    *fp;

    pthread_mutex_lock(&hashlock);
    for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {
        if (fp->f_id == id) {
            foo_hold(fp);
            break;
        }
    }
    pthread_mutex_unlock(&hashlock);
    return(fp);
}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
    struct foo    *tfp;
    int            idx;

    pthread_mutex_lock(&fp->f_lock);
    if (fp->f_count == 1) { /* last reference */
        pthread_mutex_unlock(&fp->f_lock);
        pthread_mutex_lock(&hashlock);
        pthread_mutex_lock(&fp->f_lock);
        /* need to recheck the condition */
        if (fp->f_count != 1) {
            fp->f_count--;
            pthread_mutex_unlock(&fp->f_lock);
            pthread_mutex_unlock(&hashlock);
            return;
        }
        /* remove from list */
        idx = HASH(fp->f_id);
        tfp = fh[idx];
        if (tfp == fp) {
            fh[idx] = fp->f_next;
        } else {
            while (tfp->f_next != fp)
                tfp = tfp->f_next;
            tfp->f_next = fp->f_next;
        }
        pthread_mutex_unlock(&hashlock);
        pthread_mutex_unlock(&fp->f_lock);
        pthread_mutex_destroy(&fp->f_lock);
        free(fp);
    } else {
        fp->f_count--;
        pthread_mutex_unlock(&fp->f_lock);
    }
}

图11-11 使用两个互斥量

比较图 11-11 和图 11-10,可以看出,分配函数现在锁住了散列列表锁,把新的结构添加到了散列桶中,而且在对散列列表的锁解锁之前,先锁定了新结构中的互斥量。因为新的结构是放在全局列表中的,其他线程可以找到它,所以在初始化完成之前,需要阻塞其他线程试图访问新结构。

foo_find函数锁住散列列表锁,然后搜索被请求的结构。如果找到了,就增加其引用计数并返回指向该结构的指针。注意,加锁的顺序是,先在foo_find函数中锁定散列列表锁,然后再在foo_hold函数中锁定foo结构中的f_lock互斥量。

现在有了两个锁以后,foo_rele函数就变得更加复杂了。如果这是最后一个引用,就需要对这个结构互斥量进行解锁,因为我们需要从散列列表中删除这个结构,这样才可以获取散列列表锁,然后重新获取结构互斥量。从上一次获得结构互斥量以来我们可能被阻塞着,所以需要重新检查条件,判断是否还需要释放这个结构。如果另一个线程在我们为满足锁顺序而阻塞时发现了这个结构并对其引用计数加1,那么只需要简单地对整个引用计数减1,对所有的东西解锁,然后返回。

这种锁方法很复杂,所以我们需要重新审视原来的设计。我们也可以使用散列列表锁来保护结构引用计数,使事情大大简化。结构互斥量可以用于保护foo结构中的其他任何东西。图11-12反映了这种变化。

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(id) (((unsigned long)id)%NHASH)

struct foo *fh[NHASH];
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZER;

struct foo {
    int             f_count; /* protected by hashlock */
    pthread_mutex_t f_lock;
    int             f_id;
    struct foo     *f_next; /* protected by hashlock */
    /* ... more stuff here ... */
};

struct foo *
foo_alloc(int id) /* allocate the object */
{
    struct foo    *fp;
    int            idx;

    if ((fp = malloc(sizeof(struct foo))) != NULL) {
        fp->f_count = 1;
        fp->f_id = id;
        if (pthread_mutex_init(&fp->f_lock, NULL) != 0) {
            free(fp);
            return(NULL);
        }
        idx = HASH(id);
        pthread_mutex_lock(&hashlock);
        fp->f_next = fh[idx];
        fh[idx] = fp;
        pthread_mutex_lock(&fp->f_lock);
        pthread_mutex_unlock(&hashlock);
        /* ... continue initialization ... */
        pthread_mutex_unlock(&fp->f_lock);
    }
    return(fp);
}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{
    pthread_mutex_lock(&hashlock);
    fp->f_count++;
    pthread_mutex_unlock(&hashlock);
}

struct foo *
foo_find(int id) /* find an existing object */
{
    struct foo    *fp;

    pthread_mutex_lock(&hashlock);
    for (fp = fh[HASH(id)]; fp != NULL; fp = fp->f_next) {
        if (fp->f_id == id) {
            fp->f_count++;
            break;
        }
    }
    pthread_mutex_unlock(&hashlock);
    return(fp);
}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
    struct foo    *tfp;
    int            idx;

    pthread_mutex_lock(&hashlock);
    if (--fp->f_count == 0) { /* last reference, remove from list */
        idx = HASH(fp->f_id);
        tfp = fh[idx];
        if (tfp == fp) {
            fh[idx] = fp->f_next;
        } else {
            while (tfp->f_next != fp)
                tfp = tfp->f_next;
            tfp->f_next = fp->f_next;
        }
        pthread_mutex_unlock(&hashlock);
        pthread_mutex_destroy(&fp->f_lock);
        free(fp);
    } else {
        pthread_mutex_unlock(&hashlock);
    }
}

图11-12 简化的锁

results matching ""

    No results matching ""